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Level of Effort Phase I

$100,000

Nine months

Screened ~40 catalyst formulations

Used pump-grade diesel fuel ~200 ppmw S

Preferred catalyst run 2 months
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Goals − Phase II

Eliminate deposition of carbon in cool zones of 
reactor by using self-cleaning reactor walls which 
diffuse/effuse oxygen.

Minimize/eliminate use of noble metal catalysts.

Minimize/eliminate nitrogen and recirculation of CO2
and H2O.

Fabricate prototype catalytic membrane reactor for 
conversion of commercial grade diesel fuel into 
synthesis gas.
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Previous Work:  Catalytic Membrane Reactors 
Using Oxygen Transport Membranes for 

Reforming of Natural Gas

• Methane and 
steam streamed 
past porous layer

• Air streamed 
past slotted side

Noble Metal 
Catalyzed 
Porous Layer

Dense Perovskite 
Layer
Slotted Air Side

• Perovskite ceramic material:  La1-xCaxFeO3-δ

• Oxygen flux of 17 mL·min-1 cm-2 (STP).

• Methane reforming rate of 24 mL·min-1; hydrogen production 
>48 mL·min-1 (STP) per wafer.
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Direct Partial Oxidation of Methane 
Through a Steam Reforming Step

Steam Reforming CH4 + H2O (g) CO + 3H2 ∆H = +206.1 kJ mol-1

Hydrogen Oxidation H2 + O (ad)         H2O (g)

∆H = -241.8 kJ mol-1

Oxygen Dissociation ½ O2 O (ad)

________________________________________________________________________

Net Partial Oxidation CH4 + ½ O2 CO + 2H2 ∆H = -35.7 kJ mol-1

• Note:  No net steam consumed.
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Results of thermodynamic equilibrium calculations predicting that H2 and CO 
will be overwhelmingly favored above about 950oC-1000oC if one atom of 
oxygen is transported into the reactor for each atom of carbon in the diesel 
fuel.  Calculations predict that at lower temperature deposition of carbon will 
be severe and that undesired deep oxidation products, CO2 and H2O, will form.

.02
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Local Atomic Ratio of Oxygen-to-Carbon Needed at Reactor 
Walls to Completely Suppress Formation of Carbon

Temperature
(oC)

Oxygen-to-Carbon
Atomic Ratio

300 2.61
400 2.48
500 2.30
600 1.93
700 1.40
800 1.10
900 1.03
1000 1.02

Reactor Wall

• Assumes diesel fuel contains a hydrogen-to-carbon atomic ratio of 1.86-to-1.
• Assumes 1x10-45 moles carbon is negligible.



Ellingham Diagram 
Showing Relative 

Thermodynamic Stabilities 
of Metal Sulfides

• Most metals will form 
stable sulfides when 
exposed to >100 ppmv 
H2S.

• Pt, Rh, Ir and Ag will 
remain metallic even with 
JP-8.

• Co, Cu and Fe will remain 
metallic if H2 : H2S ratio 
kept >10000 : 1.
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Some Options for Diesel Fuel 
Reforming Catalysts

Pt-Rh metal wire gauze
Pt-Rh supported on yttria stabilized zirconia
Pt-Rh supported on oxygen conducting perovskites
Fe, Co (Ag, Cu)
Oxygen conducting perovskites with Fe, Co, etc.

Note:  Compounds of Ce, Ca, Mg possible adsorbents
for removal of sulfur.
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Crystal Structure of Eltron Patented Membrane 
of General Composition:  A1-x Ax′B1-yBy′O3-δ

O2-

A-Site Cation
B-Site Cation

Crystal structure of perovskite showing A- and B-site cations.  Substances 
with this crystal structure are used in many oxidation catalysts.  The ability 
of these materials to allow diffusion of oxygen through the crystal lattice by 
a vacancy hopping mechanism, provides a source of dissociated oxygen for 
oxidation reactions.
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An ideal (100) surface of a 
perovskite catalyst crystallite.  
Note oxygen vacancy.

An ideal (111) surface of a 
perovskite catalyst crystallite.

Adapted from V. E. Henrich and P. A. Cox, “The Surface Science of Metal Oxides.”
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Partial List of Catalysts
Formulated and Tested during Phase I

Composition
La1-xSrxFeO3-δ

La1-xSrxCo1-yMnyO3-δ

La1-xSrxFe1-yCoyO3-δ

La1-xCaxFeO3-δ

La1-xSrxFe1-yRuyO3-δ

BaCe1-yYyO3-δ

BaCe1-yCoyO3-δ

BaCe1-yFeyO3-δ

La1-xSrxCoO3-δ

La1-xSrxMnO3-δ

La1-xCaxCoO3-δ
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Perovskite Catalysts

Upper:  Single phase perovskite;  Lower:  Two phase perovskite
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Summary of relative catalyst activity for diesel fuel reforming of unsupported perovskite 
catalyst beds and supported Pt-Rh/YSZ tested at 1000oC.  Percent diesel fuel reformed is 
based upon known moles of C entering the reactor and the CO, CH4 and CO2 detected 
exiting the reactor.  Selectivity: A - CO 84.6%, CO2 2.8%, CH4 12.6%, C - CO 73.8%, CO2
14.7%, CH4 11.5%.

Percent Diesel Fuel Reformed as a Function of Time; 1273K; 
Unsupported Perovskite Catalyst Bed
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SEM image of metal catalyst spheres (indicated by #1) leading 
to loss of metal catalyst surface area after 120 hours at 1000oC.



Eltron Research 
& Development

Slide 18 September 13, 2006

Two Month Test:  Percent Diesel Reformed as a Function of Time; 1273K
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Result of a long-term test at 1000oC under commercial diesel fuel 
reforming conditions.  Comparison of Pt-Rh/YSZ to perovskite based 
catalysts.
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Phase II Plans

Level of effort $750,000; two years

Minimize use of noble metals in diesel reforming 
catalysts

Fabricate prototype of catalytic membrane 
reactor with self-cleaning reactor walls

Minimize nitrogen in reactor with oxygen 
transport membranes


